R18 Code No: 154AN JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, April/May - 2023 **DIGITAL ELECTRONICS** (Electrical and Electronics Engineering)

Time: 3 Hours

Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART – A

		25 Marks)
1.a)	Write the characteristics of Digital Integrated Circuits?	[2]
b)	Implement XOR gate using only NAND gates.	[3]
c)	Implement a 4×1 mux using 2×1 mux's.	[2]
d)	Simplify the following function in POS form.	
	$F(A, B, C, D) = \sum m(2, 3, 4, 5, 6, 7, 9, 11, 12, 13)$	[3]
e)	List the applications of shift registers.	[2]
f)	What are the differences between combinational and sequential logic circuits?	2 [3]
g)	List the example of A/D converter ICs.	[2]
h)	What is the quantization and encoding process in an ADC?	[3]
i)	What do you mean by sequential memory?	[2]
j)	Write short notes on CPLDs.	[3]
27	New X	

PART – B

(50 Marks)

[5+5]

- In a new number system, X and Y are successive digits such that (XY) 2.a) $_{\rm r} = (25)_{10}$ and $(YX)_r = (31)_{10}$. Find X, Y, r.
- Convert decimal +49 and +29 to binary, using the signed 2's complement representation b) and enough digits to accommodate the numbers. Then perform the binary equivalent of (+29)+(-49), (-29)+(+49), (-29)+(-49). Convert the answers back to decimal and verify that they are correct. [5+5]

- OR 3. Explain the operation of TTL gate with totem pole output configuration. [10]
- Implement the following Boolean expression using 3 to 8 decoder. 4.a)

$$f(x, y, z) = x' + yz'$$

b) Explain a 4 bit binary adder-subtractor in detail. [5+5]

OR

- i) Find the complement of f = (bc' + a'd)(ab' + cd'). 5.a) ii) Simplify the following Boolean expression to a minimum number of literals: f = (x'y'+z)'+z+xy+wz.
 - Design a 4 input priority encoder. b)

Download all NOTES and PAPERS at StudentSuvidha.com

6.a) b)	Explain the operation of clocked SR Flip flop with its characteristic table. Design a 3-bit synchronous binary down counter using JK flip-flops. OR	[5+5]
7.a) b)	Explain the operation of 4-bit bidirectional shift register. Show that a Johnson counter with n flip-flops produces a sequence of 2 n states. I 10 states produced with five flip-flops and the Boolean terms of each of the 10 Al outputs.	
8.a) b)	What are the specifications of digital to analog converters? Explain. Explain the operation of successive approximation analog to digital converter. OR	[4+6]
9.a) b)	Discuss the operation of binary weighted resistor digital to analog converter. Draw and explain the operation of counter type analog to digital converter.	[5+5]
10.a) b)	Explain the operation of 16-bit ROM array with neat diagram. Explain the operation of charge coupled device memory in detail. OR	[5+5]
11.a) b)	Explain the operation of a six transistor CMOS SRAM cell. Implement the following Boolean functions using PLA.	
	$F1 = \sum m(3,5,7)$ $F2 = \sum m(4,5,7).$	[5+5]
	town der	